Вопрос №3 Термопара. Принцип работы термопары.

Термопара принцип работы

Термопара (термоэлектрический преобразователь температуры) — термоэлемент, применяемый в

измерительных и преобразовательных устройствах, а также в системах автоматизации.

Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары:

Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих

часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь

(измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары,

соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим

спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного

преобразователя, но вторичный преобразователь измеряет разность. их сигналов, таким образом, две

термопары вместе измеряют перепад температур между своими рабочими спаями.

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Когда концы проводника находятся при разных температурах, между ними возникает разность потенциалов, пропорциональная разности температур. Коэффициент пропорциональности называют коэффициентом термоэдс. У разных металлов коэффициент термоэдс разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термоэдс в среду с температурой Т1 . мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2. которое будет пропорционально разности температур T1 и Т2 .

Вопрос №4 Виды термометров сопротивления.

Термометр сопротивления — датчик для измерения температуры, сопротивление чувствительного элемента которого зависит от температуры. Может быть выполнен из металлического или полупроводникового материала. 6 последнем случае называется термистором.

Представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры Наиболее распространённый тип термометров сопротивления — платиновые термометры Это объясняется тем, что платина имеет высокий температурный коэффициент сопротивления и высокую стойкость к окислению. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом не менее 0,003925. В качестве рабочих средств измерений применяются также медные и никелевые термометры. В стандарте приведены диапазоны, классы допуска, таблицы НСХ и стандартные зависимости сопротивление-температура. Стандарт соответствует международному стандарту МЭК 60751 (2008). В стандарте впервые отказались от нормирования конкретных номинальных сопротивлений. Сопротивление изготовленного термометра может быть любым. Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает погрешность не лучше 0,1 °С (класс АА при 0 °С). Термометры сопротивления на основе запыленной на подложку плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов составляет 660 °С (класс С), для пленочных 600 °С (класс С).

Преимущества термометров сопротивления

Высокая точность измерений (обычно лучше ±1 °С), может доходить до 0,01 °С.

Возможность исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3-х или 4-х проводной схемы измерений

Практически линейная характеристика

Недостатки термометров сопротивления

Малый диапазон измерений (по сравнению с термопарами)

Не могут измерять высокую температуру

Термопара — принцип работы

Температура является главной и одной из основных физических величин в автоматике. Для ее измерения в промышленных условиях используется, как правило, термопары и резистивные датчики температуры.

Измерительный диапазон, точность и эксплуатация этих датчиков температуры существенно отличаются, поэтому при выборе следует руководствоваться, главным образом, областью применения и диапазоном измеряемых температур.

В данной статье описан принцип работы термопары и детали, касающиеся измерения температуры с их помощью.

Термопара — описание

Термопара принцип работы

Термопара — это наиболее часто используемый датчики для измерения температуры. Ее используют в промышленности, лабораториях, на транспорте. Термопара используется в очень многих системах сбора данных, в многоканальных устройствах, в системах мониторинга данных и управления промышленными процессами.

Несмотря на ее широкое распространение, принцип работы термопары, на первый взгляд кажется менее понятным, чем работа иных датчиков температуры. Существует множество различных видов термопар и для получения с их помощью точных результатов измерения необходим правильный подбор пар металлов, устранения существующих ограничений и соответствующая обработка измерительных данных.

Преимущества термопары

Термопары имеют много преимуществ по сравнению с другими типами температурных датчиков. Основное преимущество — термопара не дорогая, хотя защитное покрытие, соединительные провода и разъемы могут существенно повлиять на общую стоимость измерительной системы, особенно, когда измеряемая среда является экстремальной.

Термопары являются также устройствами, механически простыми, прочными и надежными. Свойства типичных металлов, используемых в термопарах, дают предсказуемое выходное напряжения. Это позволяет использовать термопары во многих устройствах, в том числе в химически агрессивных средах.

Физическая конструкция термопары проста – все, что нужно для ее изготовления, — это скрученные вместе и спаянные провода соответствующих сплавов.

Промышленные термопары изготавливаются с помощью сварки, скручивания или пайки. Термопары покрывают широкий диапазон измеряемых температур: от -100°C и до 2500°C. Типичная точность измерения составляет ±1-2°C, что превышает требуемую точность в большинстве промышленных процессов.

Недостатки термопар

Термопара принцип работыНесмотря на то, что термопары имеют относительно мало недостатков, но они значительно влияют на их применение и на оборудование, которое необходимо для их работы. К недостаткам следует отнести то, что выходное напряжение термопары составляет порядка нескольких микровольт на градус Цельсия, и что эти элементы, как правило, размещены вдали от устройств сбора и обработки данных.

Чтобы компенсировать влияние этих негативных факторов используют дифференциальный режим измерений, схемы с высоким коэффициентом усиления, фильтрацию и другие методы улучшения качества сигнала, призванные получить максимальный сигнал и минимальный шум.

И все это приводит к тому, что получается низкая скорость измерений, как правило, нескольких сотен замеров в секунду. Кроме того, выход с термопары является нелинейным, поэтому в оборудование или программное обеспечение, должна быть использована функция линеаризации, применяемая для преобразования напряжения термопары в значения температуры. Это касается в основном бытовых программ, так как коммерческая программа обычно включает в себя процедуры линеаризации.

Принцип действия термопары

В начале XIX века немецкий физик Томас Иоганн Зее

бек, обнаружил, что контакт между двумя металлами генерирует напряжение, являющееся функцией температуры.

Термопара — это практическое применение явления Зеебека. Это датчик температуры, состоящий из двух проволок разных металлов, соединенных вместе с одного конца. Эти металлы на рисунке 1 обозначены как „линия 1” и „линия 2” образуют контакты J1 и J4.

Термопара принцип работы

Рис. 1. Принцип действия термопары

Исторически сложилось так, что результат измерения температуры сопоставлялось с температурой второй термопары, предназначенной для измерения известной эталонной температуры. Самым простым и наиболее точным способом получения эталонной температуры было погружение стыка термопары в ледяную ванну, что стало причиной присвоения ему имени „холодный спай”.

Величина генерируемого таким образом, напряжения теперь зависит от разницы температур между контактами J1 и J4, а также от типов металлов, используемых в линии 1 и линии 2.

Этот результат можно описать следующим уравнением:

V=α(Tнеизвестная — Tэталонная ). где α-коэффициент Зеебека.

Различные термопары имеют разные коэффициенты, значения которых указывается на каждой термопаре. При такой конфигурации достаточно только измерить напряжение, затем найти соответствующую ему температуру, в таблице для данного сплава 1/сплава 2 термопары в зависимости от температуры 0°C.

Обратите внимание, что подключение термопары к вольтметру создает дополнительные потенциально нежелательные контакты J2 и J3. В результате эти контакты также являются термопарой, но они имеют похожий состав и противоположную полярность.

Если температура контактов J2 и J3 одинакова (условие, которое может быть достигнуто довольно легко с помощью соответствующей проектировки оборудования), то эти контакты не будут влиять на измерение.

Таким образом, мы получили базовую модель, которая может быть использована для разработки более сложной системы работы термопары.

Термопары: подробно простым языком

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Термопара принцип работы Стандартная термопара Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара принцип работы Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Термопара принцип работы Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Термопара принцип работы Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Термопара принцип работы Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Термопара принцип работы Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными. Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Термопара принцип работы Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Пирометр это продвинутый прибор для определения температуры любого объекта на основе инфракрасного датчика, который считывает невидимое инфракрасное излучение

Термистор чувствительный к изменениям температуры элемент, изготовленный из полупроводникового материала

Жидкостный термометр технический это прибор для измерения температуры технологических процессов при помощи жидкости, которая реагирует на изменение температуры

Ртутный термометр технический это прибор для измерения температуры, в котором в качестве жидкости используется ртуть, единственный жидкий метал

Биметаллический термометр это прибор для измерения температуры, принцип работы которого основан на расширении и сжатии твердых тел

Что такое термопара?

Термопара – это электротехническое изделие, предназначенное для измерения температуры на производстве, в лабораторных и научных исследованиях, а также в бытовых условиях. На сегодняшний день термопары очень распространены и применяются практически везде. Их используют для измерения температуры воды, воздуха, различных газов, для измерения температуры смазочных материалов в механизмах и т.д.

Термопара принцип работы

Простейшая термопара представляет собой два разнородных электропроводящих элемента, соединённых друг с другом в одной точке. Соединение может быть выполнено в виде скрутки, пайки или сварки. В качестве проводящих электричество элементов в основном используются металлические проводники, реже полупроводниковые элементы.

В зависимости от используемых проводниковых материалов в термопаре, можно измерять температуры в различных числовых диапазонах. Благодаря использованию термопар появилась возможность производить измерения температур примерно от -250ᴼC до 2000ᴼC и более.

Принцип работы и схема

Работа любой термопары основывается на термоэлектрическом эффекте, который был открыт Т.И. Зеебеком в далёком 1821 году. Данный эффект заключается в том, что если последовательно соединить друг с другом два разнородных металлических проводника, образуя таким образом замкнутую электрическую цепь, и в одном месте соединения проводников произвести нагрев, то в цепи возникает электродвижущая сила (ЭДС). Данную электродвижущую силу называют термо-ЭДС. Под действием термо-ЭДС в замкнутой цепи начинает протекать электрический ток.

Термопара принцип работы

Место нагрева обычно называют горячим спаем. Место, где нет нагрева – холодный спай.

Если в разрыв цепи подключить гальванометр или микровольтметр, то можно измерить величину термо-ЭДС, которая будет составлять несколько мили- или микровольт. Значение термо-ЭДС будет зависеть от величины нагрева в месте соединения проводников и от величины температуры в месте соединения проводников, где нагрев не происходит. Т.е. значение термо-ЭДС зависит от разности температур между холодным и горячим спаем. Также термо-ЭДС зависит и от рода самих проводников.

Таким образом, если место соединения разнородных проводников термопары нагреть, то между несоединёнными (свободными) концами проводников возникнет разность потенциалов, которую можно измерить электроизмерительным прибором. Благодаря современным преобразователям возникающую разность потенциалов можно преобразовать в определённое цифровое значение, т.е. вполне реально узнать значение температуры нагрева в месте соединения проводников термопары.

Для того чтобы измерения были точными, температура холодного спая должна быть неизменной. Т.к. это не всегда возможно, используются специальные компенсационные схемы для компенсации температуры холодного спая.

Конструкция

Современные термопары изготавливаются различной формы и длины. По конструктивному исполнению их можно разделить на две группы:

● термопары с защитным кожухом.

Первые представляют собой изделие, у которого место соединения двух проводников не закрыто и не защищено от внешних воздействий. Такое исполнение позволяет достичь быстрого времени измерения температуры и низкой инертности.

Второй тип термопары выпускается в виде зонда. Зонд представляет собой металлическую трубку с внутренним изолятором, выдерживающим высокую температуру. Внутрь зонда помещается термоэлектрический элемент термопары. Благодаря такой конструкции термоэлемент защищён от влияния агрессивных сред различных технологических процессов.

Типы термопар — таблица

Термопара принцип работы

Термопары отличаются друг от друга материалом используемых проводников и в зависимости от этого делятся на определённые типы. Вот некоторые из них:

  1. Тип В. Платина-родий. Диапазон измеряемых температур у термопары составляет от +600 до +1700ᴼC. Данный тип желательно использовать при измерении температур выше +600ᴼC.
  2. ТипE. Хромель-константан. Термопара, у которой диапазон измеряемых температур в пределах от -200 до +700ᴼC.
  3. ТипJ. Железо-константан. Диапазон измеряемых температур от -200 до +750ᴼC.
  4. ТипK. Хромель-алюмель. С помощью этой термопары можно производить измерения температур в районе от -200 до +1200ᴼC. Это термопара общего применения. Она недорогая, поэтому очень широко используется.
  5. ТипN. Нихросил-нисил. Диапазон измеряемых температур от -270 до +1200ᴼC.
  6. ТипR. Платина-родий. Диапазон измеряемых температур от 0 до +1300ᴼC. Термопара используется при измерении высоких температур, однако её практическое использование весьма ограниченно ввиду большой стоимости и низкой чувствительности.
  7. ТипS. Платина-родий. Диапазон измеряемых температур от 0 до +1300ᴼC. Эту термопару можно использовать в качестве замены предыдущей.
  8. ТипT. Медь-константан. Диапазон измеряемых температур от -200 до +350ᴼC. Термопары типа T используют обычно в устройствах магнитного типа, т.к. медь и константан не магнитные металлы.

У каждого соединения двух определённых сплавов есть своя постоянная зависимость между измеряемой температурой и напряжением на выходе термопары.

Для выбора типа термопары, необходимо знать диапазон температур технологического процесса.

Для того чтобы производить измерение температуры при помощи термопар, их подключают к специальным измерительным преобразователям. Подключение выполняется либо напрямую, либо дифференциально (в разрыв проводников с различными коэффициентами термо-ЭДС).

Если термопара находится на довольно длинном расстоянии от измерительного прибора, используют специальные удлинительные провода и так называемые компенсационные провода.

У термопар есть масса преимуществ по сравнению с другими датчиками температуры. К плюсам можно отнести:

● невысокая стоимость (хотя зависит от дополнительных элементов, таких как соединительные провода, защита в виде зонда, дополнительные разъёмы);

● возможность использовать в экстремальных условиях и достаточно агрессивных средах;

● большой диапазон измеряемых температур;

● определённая точность измерений;

● широкая сфера применения.

Как и у любого изделия, у термопар имеются и недостатки. К ним относятся:

● низкое выходное напряжение (на один градус по Цельсию всего несколько микровольт);

Термопара: принцип действия, устройство

October 26, 2014

Существует множество разнообразных устройств и механизмов, позволяющих измерять температуру. Некоторые из них применяются в повседневной жизни, какие-то — для различных физических исследований, в производственных процессах и других отраслях.

Одним из таких устройств является термопара. Принцип действия и схему данного устройства мы рассмотрим в последующих разделах.

Физическая основа работы термопары

Принцип работы термопары основан на обычных физических процессах. Впервые эффект, на основе которого работает данное устройство, был исследован немецким ученым Томасом Зеебеком.

Термопара принцип работы

Суть явления, на котором держится принцип действия термопары, в следующем. В замкнутом электрическом контуре, состоящем из двух проводников различного вида, при воздействии определенной температуры окружающей среды возникает электричество.

Получаемый электрический поток и температура окружающей среды, воздействующая на проводники, находятся в линейной зависимости. То есть чем выше температура, тем больший электрический ток вырабатывается термопарой. На этом и основан принцип действия термопары и термометра сопротивления.

При этом один контакт термопары находится в точке, где необходимо измерять температуру, он именуется «горячим9raquo;. Второй контакт, другими словами — «холодный9raquo;, — в противоположном направлении. Применение для измерения термопар допускается лишь в том случае, когда температура воздуха в помещении меньше, чем в месте измерения.

Такова краткая схема работы термопары, принцип действия. Виды термопар мы рассмотрим в следующем разделе.

Виды термопар

В каждой отрасли промышленности, где необходимы измерения температуры, в основном применяется термопара. Устройство и принцип работы различных видов данного агрегата приведены ниже.

Хромель-алюминиевые термопары

Данные схемы термопар применяются в большинстве случаев для производства различных датчиков и щупов, позволяющих контролировать температуру в промышленном производстве.

Термопара принцип работы

Их отличительными особенностями можно назвать довольно низкую цену и огромный диапазон измеряемой температуры. Они позволяют зафиксировать температуру от -200 до +13000 градусов Цельсия.

Нецелесообразно применять термопары с подобными сплавами в цехах и на объектах с высоким содержанием серы в воздухе, так как этот химический элемент негативно влияет как на хром, так и на алюминий, вызывая нарушения в функционировании устройства.

Хромель-копелевые термопары

Принцип действия термопары, контактная группа которой состоит из этих сплавов, такой же. Но эти устройства работают в основном в жидкости либо газообразной среде, обладающей нейтральными, неагрессивными свойствами. Верхний температурный показатель не превышает +8000 градусов Цельсия.

Применяется подобная термопара, принцип действия которой позволяет использовать ее для установления степени нагрева каких-либо поверхностей, например, для определения температуры мартеновских печей либо иных подобных конструкций.

Железо-константановые термопары

Данное сочетание контактов в термопаре не настолько распространено, как первая из рассматриваемых разновидностей. Принцип работы термопары такой же, однако подобная комбинация хорошо показала себя в разреженной атмосфере. Максимальный уровень замеряемой температуры не должен превышать +12500 градусов Цельсия.

Термопара принцип работы

Однако, если температура начинает подниматься выше +7000 градусов, существует опасность нарушения точности измерений в связи с изменением физико-химических свойств железа. Имеют место даже случаи коррозии железного контакта термопары при наличии в окружающем воздухе водных паров.

Платинородий-платиновые термопары

Наиболее дорогая в изготовлении термопара. Принцип действия такой же, однако отличается она от своих собратьев очень стабильными и достоверными показаниями температуры. Имеет пониженную чувствительность.

Основная область применения данных устройств — измерение высоких температур.

Вольфрам-рениевые термопары

Также применяются для измерения сверхвысоких температур. Максимальный предел, который можно зафиксировать с помощью данной схемы, достигает 25 тысяч градусов по шкале Цельсия.

Их применение требует соблюдения некоторых условий. Так, в процессе измерения температуры нужно полностью устранить окружающую атмосферу, которая оказывает негативное воздействие на контакты в результате процесса окисления.

Для этого вольфрам-рениевые термопары обычно помещают в защитные кожухи, заполненные инертным газом, защищающим их элементы.

Выше была рассмотрена каждая существующая термопара, устройство, принцип работы ее в зависимости от применяемых сплавов. Теперь рассмотрим некоторые конструктивные особенности.

Термопара принцип работы

Конструкции термопар

Существует две основные разновидности конструкций термопар.

С применением изоляционного слоя. Данная конструкция термопары предусматривает изолирование рабочего слоя устройства от электрического тока. Подобная схема позволяет использовать термопару в технологическом процессе без изоляции входа от земли.

Без применения изоляционного слоя. Такие термопары могут подключаться лишь к измерительным схемам, входы которых не имеют контакта с землей. Если данное условие не соблюдается, в устройстве возникнет две независимых замкнутых схемы, в результате чего показания, полученные с помощью термопары, не будут соответствовать действительности.

Термопара принцип работы

Бегущая термопара и ее применение

Существует отдельная разновидность данного устройства, именуемая «бегущей9raquo;. Принцип действия бегущей термопары мы сейчас рассмотрим более подробно.

Эта конструкция применяется в основном для определения температуры стальной заготовки при ее обработке на токарных, фрезерных и иных подобных станках.

Термопара принцип работы

Следует отметить, что в данном случае возможно использование и обычной термопары, однако, если процесс изготовления требует высокой точности температурного режима, бегущую термопару трудно переоценить.

При применении данного метода в заготовку заранее запаивают ее контактные элементы. Затем, в процессе обработки болванки, данные контакты постоянно подвергаются воздействию резца или иного рабочего инструмента станка, в результате чего спай (который является главным элементом при снятии температурных показателей) как бы «бежит9raquo; по контактам.

Этот эффект повсеместно применяется в металлообрабатывающей промышленности.

Технологические особенности конструкций термопар

При изготовлении рабочей схемы термопары производится спайка двух металлических контактов, которые, как известно, изготовлены из разных материалов. Место соединения носит название «спай9raquo;.

Следует отметить, что делать данное соединение с помощью спайки необязательно. Достаточно просто скрутить вместе два контакта. Но такой способ производства не будет обладать достаточным уровнем надежности, а также может давать погрешности при снятии температурных показателей.

Если необходимо измерение высоких температур, спайка металлов заменяется на их сварку. Это связано с тем, что в большинстве случаев припой, применяемый при соединении, имеет низкую температуру плавления и разрушается при превышении ее уровня.

Схемы, при изготовлении которых была применена сварка, выдерживают более широкий диапазон температуры. Но и этот способ соединения имеет свои недостатки. Внутренняя структура металла при воздействии высокой температуры в процессе сваривания может измениться, что повлияет на качество получаемых данных.

Кроме того, следует контролировать состояние контактов термопары в процессе ее эксплуатации. Так, возможно изменение характеристик металлов в схеме вследствие воздействия агрессивной окружающей среды. Может произойти окисление либо взаимная диффузия материалов. В подобной ситуации следует заменить рабочую схему термопары.

Разновидности спаев термопар

Современная индустрия производит несколько конструкций, которые применяются при изготовлении термопар:

с открытым спаем;

с изолированным спаем;

с заземленным спаем.

Особенностью термопар с открытым спаем является плохая сопротивляемость внешнему воздействию.

Следующие два типа конструкции могут применяться при измерении температур в агрессивных средах, оказывающих разрушительное влияние на контактную пару.

Кроме того, в настоящее время промышленность осваивает схемы производства термопар по полупроводниковым технологиям.

Термопара принцип работы

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

Погрешность измерений состоит из следующих составных частей:

случайная погрешность, вызванная особенностями изготовления термопары;

погрешность, вызванная нарушением температурного режима «холодного9raquo; контакта;

погрешность, причиной которой послужили внешние помехи;

погрешность контрольной аппаратуры.

Преимущества использования термопар

К преимуществам использования подобных устройств для контроля температуры, независимо от области применения, можно отнести:

большой промежуток показателей, которые способны быть зафиксированы с помощью термопары;

спайку термопары, которая непосредственно участвует в снятии показаний, можно расположить в непосредственном контакте с точкой измерения;

несложный процесс изготовления термопар, их прочность и долговечность эксплуатации.

Недостатки измерения температуры с помощью термопары

К недостаткам применения термопары следует отнести:

Необходимость в постоянном контроле температуры «холодного9raquo; контакта термопары. Это отличительная особенность конструкции измерительных приборов, в основе которых лежит термопара. Принцип действия данной схемы сужает область ее применения. Они могут быть использованы только в том случае, если температура окружающего воздуха ниже температуры в точке измерения.

Нарушение внутренней структуры металлов, применяемых при изготовлении термопары. Дело в том, что в результате воздействия внешней окружающей среды контакты теряют свою однородность, что вызывает погрешности в получаемых температурных показателях.

В процессе измерения контактная группа термопары обычно подвержена негативному влиянию окружающей среды, что вызывает нарушения в процессе работы. Это опять же требует герметизации контактов, что вызывает дополнительные затраты на обслуживание подобных датчиков.

Существует опасность воздействия электромагнитных волн на термопару, конструкция которой предусматривает длинную контактную группу. Это также может сказаться на результатах измерений.

В некоторых случаях встречается нарушение линейной зависимости между электрическим током, возникающим в термопаре, и температурой в месте измерения. Подобная ситуация требует калибровки контрольной аппаратуры.

Заключение

Несмотря на имеющиеся недостатки, метод измерения температуры с помощью термопар, который был впервые изобретен и опробован еще в 19 веке, нашел свое широкое применение во всех отраслях современной промышленности.

Кроме того, существуют такие области применения, где использование термопар является единственным способом получения температурных данных. А ознакомившись с данным материалом, вы достаточно полно разобрались в основных принципах их работы.

Термопара принцип работы

10 чайных трендов, на которые обязательно нужно обратить внимание Интересуетесь кулинарной модой? Познакомьтесь с оригинальными способами использования чая, которые сейчас в тренде.

Термопара принцип работы

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Термопара принцип работы

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

Термопара принцип работы

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Термопара принцип работы

Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

Термопара принцип работы

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.


Внимание, только СЕГОДНЯ!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *